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Abstract

The widespread adoption of proprietary Large
Language Models (LLMs) accessed strictly
through closed APIs has created a critical chal-
lenge for responsible deployment: a fundamen-
tal lack of interpretability. To address this, we
propose a model-agnostic, post-hoc attribution
interpreter operating at the sentence level. Our
approach trains an Energy-Based Model (EBM)
as a surrogate to capture the LLM’s internal
conceptual consistency between prompts and
responses. This energy landscape guides the
training of a lightweight interpreter network.
Uniquely, our interpreter operates as a stan-
dalone tool; once trained, it quantifies the influ-
ence of prompt sentences on a user-specified
target output without requiring further API
queries to the LLM. By globally training a lo-
cal interpreter across diverse inputs, our frame-
work captures broader generation patterns and
mitigates instance-specific biases. Experiments
demonstrate that our EBM accurately simulates
the target LLM, allowing the interpreter to ef-
fectively identify the prompt sentences most
influential in generating specific target outputs.

1 Introduction

Large Language Models (LLMs) have demon-
strated extraordinary performance across complex
tasks. Consequently, researchers and developers
are rapidly adopting them for diverse applications.
However, the critical challenge facing this adoption
is a fundamental lack of interpretability. Most pow-
erful LLMs are proprietary and accessed strictly
through closed-access APIs. Even when architec-
tures and pre-training datasets are available, their
complexity obscures exactly how outputs are gen-
erated. In high-stakes domains like medicine and
law, this opacity is unacceptable, as experts cannot
verify the generated output against domain knowl-
edge or detect hidden biases. This prevents meeting
the application-grounded standards for responsible
deployment (Doshi-Velez and Kim, 2017).

Post-hoc attribution is a primary approach to
addressing this opacity. These methods explain
model behavior by identifying an importance vec-
tor for input features. Essentially, they measure
how much each input feature influences the output
within a local neighborhood. However, standard
attribution techniques, including white-box and
model-agnostic, struggle in the context of LLMs.
White-box methods, which rely on gradients or
activations, are incompatible with closed APIs.
Furthermore, the faithfulness of popular proxies
like attention weights has been challenged (Jain
and Wallace, 2019). Model-agnostic methods ex-
ist (Ribeiro et al., 2016; Lundberg and Lee, 2017;
Seyyedsalehi et al., 2024), but typically target dis-
criminative models with well-defined outputs. In-
terpreting generative models is significantly harder
as the problem is fundamentally ill-posed. These
models utilize complex representations to produce
high-dimensional outputs like text. Therefore, ef-
fective explanation is hindered by the output’s in-
teractivity and sheer volume (Schneider, 2024).

Alternatives like prompt-based self-explanation
(Wei et al., 2022) are similarly problematic; they
rely on the same process we seek to verify, leading
to circular logic and motivated reasoning. Conse-
quently, models often produce plausible-sounding
yet unfaithful confabulations (Turpin et al., 2023).
While automated prompt engineering can steer
model behavior to mitigate biases, it is unsuitable
for interpretation. These methods optimize instruc-
tions for pre-defined targets (Zhou et al., 2023;
Clemmer et al., 2024), rendering them unusable for
ambiguous interpretation tasks.

To address these limitations, we propose a
model-agnostic, post-hoc attribution interpreter.
We diverge from standard approaches by shifting
the resolution from noisy tokens to coherent “con-
cepts.” We define a concept as a sentence, which
is the smallest unit of language that expresses a
complete thought. Our goal is to relate elements of
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Figure 1: Overview of the Proposed Framework. The prompt and response of a black-box LLM are split into
sentences and embedded via a pre-trained model. An encoding module maps these embeddings to a concept space
where proximity reflects relevance. Subsequently, an interaction module evaluates the consistency between input
and output concepts to identify the most influential prompt sentences. These modules are trained using signals from
an energy network that simulates the generation process of the target LLM.

the output directly to the user prompt at this con-
cept level. Formally, given a prompt x and an LLM
response y, we target a specific subset of the output
yr C y. We then produce an importance vector
to identify the subset of prompt sentences xg C x
that were most influential in generating y .

We employ a unique paradigm to globally train
a local interpreter. Unlike local interpreters (e.g.
LIME (Ribeiro et al., 2016)) which observe only
immediate neighborhoods—often causing inter-
pretability illusions (Friedman et al., 2024)—we
train across a wider distribution. This enables our
model to capture global generation patterns and
mitigate intrinsic biases.

Figure 1 illustrates an overview of the approach.
We first train a transformer-based Energy-Based
Model (EBM) to act as a surrogate for the black-
box LLM. It maps the prompt and LLM response
sentences to a latent “concept space,” which simu-
lates the concept-level relationships embedded in
the target LLM, and calculates an energy score.
This score quantifies the conceptual consistency be-
tween the input and output. We then use this energy
landscape to guide the training of an interpreter net-
work. Given a prompt and a target output subset,
the interpreter produces an importance vector that
isolates the prompt sentences most influential in
generating that response. In summary, we:

1. Shift the unit of analysis from tokens to sen-
tences. This enables attribution at the level
of semantically coherent concepts, making ex-
planations more intelligible to humans.

2. Introduce a transformer-based EBM with
novel sampling methods capable of learning
a random field over prompts and responses.
This model effectively learns authentic input-
output dynamics, serving as a robust surrogate
for the black-box model.

3. Propose a post-hoc, model-agnostic frame-
work for interpreting black-box LLMs at a
conceptual level. This interpreter finds the
specific prompt sentences responsible for trig-
gering a target subset of the LLM’s output.

2 Related Work
2.1 Post-hoc Attribution Methods

Attribution methods score the importance of input
features for a specific model output. White-box
approaches to attribution often utilize gradients,
propagating output salient signals back to input to-
kens (Simonyan et al., 2014; Sundararajan et al.,
2017; Shrikumar et al., 2017; Chefer et al., 2021).
Others use internal attention weights as proxies for
feature importance (Xu et al., 2015; Li et al., 2017,
Xie et al., 2017; Hao et al., 2021). However, gra-
dients are inaccessible for proprietary APIs, and
attention weights are frequently unfaithful to the
reasoning process (Jain and Wallace, 2019). Simi-
larly, influence functions pose data-centric explana-
tions (Koh and Liang, 2017) but remain infeasible
without access to the base data or model’s Hessian.

Perturbation-based methods offer a model-
agnostic alternative; they measure output
changes when input segments are removed or



altered (Ribeiro et al., 2016; Lundberg and
Lee, 2017; Yin and Neubig, 2022). Hackmann
et al. (2024) apply this to identify influential
words in LLM prompts. However, this approach
scales poorly for generative tasks. Validating
a single explanation often requires thousands
of model queries, incurring high computational
costs (Enouen et al., 2024; Zhao and Shan, 2024).

Finally, prompt-based self-explanation leverages
the LLM’s own generation capabilities. Most
notably, techniques like Chain-of-Thought (CoT)
ask the model to produce a rationale to justify
its output (Wei et al., 2022). While compelling,
these explanations lack guarantees of faithfulness;
they often represent plausible post-hoc rational-
izations rather than the true internal computation
path (Turpin et al., 2023).

2.2 Energy-Based Models in NLP

Energy-Based Models (EBMs) have been success-
fully adapted for generative Natural Language Pro-
cessing (NLP), primarily through learning global
scoring functions. Bakhtin et al. (2019) demon-
strated that Transformer-based discriminators can
function as EBMs; by distinguishing between hu-
man and machine text, these models assign low
energy to coherent sequences. This established the
potential of EBMs as holistic text evaluators.
Additionally, several paradigms utilize EBMs to
refine existing model outputs. The Residual EBM
approach adds a corrective energy term to the log-
probabilities of a base autoregressive model (Deng
et al., 2020; Bakhtin et al., 2021). This allows the
system to capture high-level properties, such as
coherence, that the base model may miss. Alterna-
tively, Tu et al. (2020) use a powerful autoregres-
sive teacher to define an energy landscape; a stu-
dent network is then trained via knowledge distilla-
tion to generate outputs that minimize this energy.
EBMs can also act as post-processing rerankers
to select the highest-quality result from a set of
candidates (Bhattacharyya et al., 2021).

2.3 Concept-Based Explanations

Interpretability research is increasingly shifting
away from granular token-level attributions and to-
ward concept-based explanations. These methods
map decisions to human-intelligible ideas rather
than individual features (Kim et al., 2018). Our
work aligns with this paradigm by defining a “sen-
tence” as the fundamental conceptual unit, as it
represents a robust thought for interpretation.

Treating sentences as semantic objects is well-
justified by the history of language modeling. Foun-
dational architectures like BERT used Next Sen-
tence Prediction to learn logical relationships (De-
vlin et al., 2019). Subsequent work on Sentence-
BERT confirmed that fine-tuned sentence represen-
tations map similar meanings to distinct, nearby
points in a vector space (Reimers and Gurevych,
2019). By leveraging sentences as concepts, our
work parallels recent architectural innovations such
as Large Concept Models, which shift the core
computational unit from tokens to sentence-level
representations (Barrault et al., 2024).

3 Methodology

Our goal is to develop a post-hoc, model-agnostic
method for interpreting black-box LLMs, specif-
ically by identifying which input sentences drive
the response. We depart from standard token-level
attribution by establishing the sentence as the fun-
damental unit of analysis. As the smallest linguistic
unit expressing a complete proposition, the sen-
tence serves as a robust “concept,” enabling us to
interpret generation as an interplay of complete
ideas rather than ambiguous tokens. Formally, let
x be the prompt and y be the LLM response. We
target a subset of output sentences, yr C y, and
seek to quantify the influence of each concept in x
on the generation of yr.

We propose a two-stage framework to achieve
this. First, we pre-train an Energy-Based Model
(EBM), &Lm(x,y;0), to serve as a differentiable
surrogate for the black-box LLM. As a function
of 0, this model assigns scalar energy values rep-
resenting the consistency of a prompt-response
pair (x,y) with the target LLM’s generation pat-
terns. Second, we leverage this energy landscape
to guide the training of a lightweight interpreter,
IN (x,yr;«), parameterized by «. Taking the
prompt, response, and a user-specified target out-
put yr as inputs, the interpreter generates a sparse,
binary vector matching the number of prompt sen-
tences. In this vector, values of 1 identify the subset
of prompt sentences xg C x strictly necessary for
generating the target.

3.1 Sentence Extraction and Embedding

The pipeline begins by transforming the input text
x and output text y into sequences of concepts.
We first perform sentence segmentation using
the spaCy library (Honnibal and Montani, 2017).
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Figure 2: Architectural Overview. Schematics for (a) the energy function & and (b) the interpreter network ZN.

Subsequently, we employ a frozen, pre-trained
Sentence-BERT module (Reimers and Gurevych,
2019) to map each sentence to a fixed-dimensional
vector. This yields embedding sequences S™ and
SO which function analogously to token embed-
dings within our architecture. For further pre-
processing and implementation details, including
padding strategies, visit Appendix A.

3.2 The Energy-Based Surrogate Model

To approximate the black-box LLM’s behavior, we
design a globally-aware EBM that learns to distin-
guish variation of authentic prompt-response pairs
from corrupted ones; the lower the assigned en-
ergy, the more likely the pair is consistent with
concept interactions within the LLM. As shown
in Figure 2a, the architecture processes sentence
embeddings in three stages:

1. Concept Space Projection: Static embed-
dings (S, S°U) capture meaning in isolation,
but lack the specific context of the prompt
and response. To remedy this, we pass these
embeddings through separate, trainable self-
attention modules (P£, P&, to project them

into a dynamic “concept space” (C™", C°U).

Here, distances reflect the LLM’s internal de-

pendency structure rather than generic seman-

tic similarity. This is a function of the model’s
underlying architecture and training dataset.

Input-Output Interaction: A cross-attention
block allows input concepts C'™" to attend to
output concepts C°", weighing the causal in-
fluence of the prompt on the response.

3. Energy Calculation: The interacting repre-
sentations are aggregated via attention pooling
and passed through a Multi-Layer Perceptron
(MLP) to output a scalar energy & m(X,y; ).

The EBM is trained in two phases: First, it is
pre-trained using a novel set of objectives, then
subsequently fine-tuned alongside the interpreter.

For pre-training, we generate a dataset of prompt-
output pairs (x,y) from the target black-box LLM.
To constrain the EBM to the target LLM’s input-
output dynamics, we employ two complementary
contrastive objectives. We define the fidelity ob-
jective (Lfgelity) as an InfoNCE loss to capture the
global generation signature; by treating responses
from humans or other LMs as negative samples, we
force the EBM to distinguish the target’s authen-
tic style. Conversely, we define the local depen-
dency objective (Lqep) to target local conceptual
interactions using two batch-wise samplers. The
first, (Zpart, Yparr)» distinguishes the correct partial



response from off-topic partial responses for the
InfoNCE 1088 Lresp-dep- The second, (x;art, Ypart)
mirrors this for partial prompts against negatives in
the InfoNCE loss Lpm-gep- This compels the model
to verify input-output dependencies piece-by-piece
rather than relying on general heuristics.

Thus, we minimize the combined adaptive loss:

Etotal = (1 - )\)Eﬁdelity + A[:dep (D

where A is a configurable weight and Ly, is
the sum of the two sampler losses, Lresp-dep and
Lpme-dep- We define the energy scoring term as
h(u,v) = exp(—&m(u,v;0)/7). Accordingly,
the individual InfoNCE losses are formulated as:
XirYi

L= —log (h(xi,yi)Jrz};L((x,’y},’)iNi h(x’7y’)) (2)
Here, N; constitutes the set of negative samples.
Because the quality of the energy landscape hinges
on these contrasts, we detail the specific sampling
protocols—ranging from human baselines to the
partial-sequence batching strategies—and the full
training hyperparameters in Appendix B. This pre-
training phase (Fig. 5) yields a globally-aware
energy function &1y, which captures the target
LLM’s latent structure and provides the supervision
signal required to train the interpreter.

3.3 The Interpreter Model

Given prompt X, response y, and target yr C vy,
the interpreter identifies prompt sentences influ-
ential to yr. It outputs a binary vector where 1
indicates a necessary precursor sentence.

Figure 2b illustrates the architecture, which mir-
rors the EBM’s three stages with targeted modifi-
cations. As before, embeddings S and S°" are
projected into the concept space via self-attention.
In the interaction phase, however, we retain only
the target concepts C'"* and mask the remainder of
the output. The input concepts C™ then attend to
these targets via cross-attention. Finally, an MLP
and Gumbel-Softmax unit (Jang et al., 2017) (see
App. C) process the results to yield a binary impor-
tance vector for the input sentences.

Let X = x ® ZN (x;y7, ) be the selected sub-
set. A successful selection minimizes the energy
of the authentic pair (X, y7) and maximizes the en-
ergy of the irrelevant remainder (x — X, yr). The
interpreter optimization is thus:

& = argmax E, ) [ELM(X - X,yr;0)
a (3)
—&m(X, yr;0)

However, masking inputs inherently causes dis-
tribution shifts (Hsia et al., 2024). To prevent this,
we fine-tune the EBM alongside the interpreter via
periodic alternating optimization (Fig. 6, App. D.1).
First, we update the interpreter parameters (Eq. 3)
given the current EBM. Second, we periodically
query the target LLM with the selected prompt sub-
set X to generate a consistent response y. Third,
we update the EBM using this fresh pair (X,y) and
the loss described in Section 3.2. While this incurs
API costs, our experiments suggest it is optional
for standard benchmarks yet beneficial for robust,
large-scale deployments. This process transfers the
EBM’s structure to the interpreter, enabling stan-
dalone inference with zero additional queries.

4 Experiments

We empirically validate our framework by first
establishing the pre-trained EBM’s efficacy as a
faithful surrogate model. We present a representa-
tive ablation study to demonstrate its capacity to
capture the target LLM’s latent semantic relations.
Subsequently, we evaluate the interpreter trained
on these energy landscapes across two complemen-
tary dimensions: semantic plausibility and causal
faithfulness. We emphasize that our framework is
designed to train task-oriented interpreters where
each interpreter is specialized for a specific type
of task (e.g. general Q&A). This focused scope
allows for effective training even with limited data.

4.1 Validating the Dual-Objective EBM

To justify our dual-objective framework, we com-
pare three EBM designs selected from our broader
experiments. We argue that a robust surrogate re-
quires two complementary properties: fidelity, to
capture the target LLM’s global distribution, and
local dependency, to enforce local causal precision.

Experimental Setup. Models were trained on
the HC3 dataset, a multi-domain Q&A corpus
containing both human and model-generated text.
We employed GPT-40-Mini as the target and
GPT-2-Medium as the contrastive baseline. We
utilized compact 181M parameter models (~71M
trainable) on a subset of 20, 000 samples for effi-
ciency. Detailed configurations are in Appendix B.
Preliminary scaling experiments demonstrated that
larger models achieved wider energy gaps and
faster convergence, which correlated with higher
accuracy in distinguishing authentic pairs. This
indicates the framework’s scalability despite the
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Table 1: EBM Ablation Study Results. We evaluate the models across four dimensions of interpretability. M ridelity
suffers from reliance on artifacts. Mpep achieves high margins but creates an abstract latent space that hinders
downstream interpretation. Mmyynria balances robustness with causal precision.

I. Core Directive II. Robustness III. SOTA Alignment IV. Causal Disentanglement
(DeYoung et al., 2020) (Gururangan et al., 2018) (Gemini-2.5-Flash) (Gemini-3-Pro)
Model IR@11 SNRT | Art. AE| RIE| | nDCG@31 Prec@1 1 Acc T ESM 1
MEidetiy | 67.62% 1.45 +0.446 85.1% 0.553 26.0% 62.18% 0.145
Mbpep 80.21% 6.89 -0.014 6.9 % 0.699 52.0% 84.16% 0.499
Muybria | 84.77% 7.15 +0.104 15.17% 0.796 81.0% 92.40% 0.382

limited scale of this study. We focus our analysis
on the following distinct configurations:

* MpFideiity (Baseline): Trained solely on struc-
tural fidelity (A = 0), mimicking standard
likelihood modeling.

* Mpep (Ablation): Trained solely on the local
dependency objective (A = 1) to identify se-
mantic links across partial segments without
overfitting to surface artifacts.

* Muypria (Ours): A dual-objective model
(A = 0.9) using dependency samplers for
structural dependencies and fidelity signals
to regularize the latent space.

Evaluations across four semantic alignments
(Tab. 1) follow protocols in Appendix E.

Dimension I: Core Directive Localization. We
assess the ability to localize primary intent (e.g., the
question) amidst background context using Inter-
rogative Recall IR@1) and Signal-to-Noise Ratio
(SNR) (DeYoung et al., 2020). We note that per-
fect recall is not expected, as human prompts often
contain implicit or structurally ambiguous direc-
tives. As shown in Table 1, ME;deliry exhibits dif-
fuse attention sensitive to background noise, while
Muybria achieves a 5x SNR improvement, con-
firming that the local dependency objective com-
pels the model to prioritize semantic directives.

Dimension II: Semantic Robustness. We mea-
sure the neural models’ prevalent sensitivity to
“annotation artifacts” (Gururangan et al., 2018)
using Artifact Energy Impact and Rank-1 Error
(R1E). MFiqelity suffers from a fidelity trap, over-
prioritizing conversational fillers. Conversely,
Mpep successfully ignores artifacts, yet its abstract
latent space led to downstream interpreter collapse
in our tests. Mpyprig balances this trade-off, retain-
ing the regularization necessary for training.

Dimension IIT: Alignment with SOTA Oracles.
Using Gemini-2.5-Flash as a reference oracle,
we evaluate ranking quality via nDCG@3 (Jarvelin
and Kekéldinen, 2002) and Soft Precision@].
Muybria achieves the highest alignment, indicating
that the hybrid objective produces concept rank-
ings most consistent with the generation patterns
of state-of-the-art foundation models.

Dimension IV: Causal Disentanglement. We
use counterfactual triplets (Ytarget, Tcause, Ldistractor)
generated by Gemini-3-Pro following protocols
from Kaushik et al. (2020). While Mp,, pro-
duces the sharpest energy landscape, its hyper-
discrimination reduces overall accuracy. Myypria
achieves the highest accuracy, successfully balanc-
ing discriminative confidence with the robustness
required to filter spurious correlations.

4.2 Interpreter Semantic Plausibility Analysis

In the absence of ground-truth labels for concept
importance in open-ended generation, we evalu-
ate the plausibility of our method by measuring
its alignment with the attribution judgments of
powerful LLMs. We treat these LLMs as “ora-
cles,” assuming that consensus among diverse high-
capacity models serves as a reliable proxy. For this
evaluation, we utilize our most robust EBM config-
uration (see App. D for detailed architecture).

Experimental Setup. We interpret the outputs of
GPT-40-Mini on a subset of 200 prompt-response
pairs (2,000 combinations) from the HC3-based
dataset. For every sentence in the response, we
task distinct LLMs (Gemini-2.5-Flash, GPT-4o,
GPT-40-Mini, GPT-J-6B, and GPT-2-XL) to score
the sentences in the original prompt based on their
contribution to generating that target. We then
compare the rankings produced by our Energy-
Based Concept-Level Surrogate Interpreter (ESCI)
against these oracles. We report results on two
scenarios: Scenario A (averaging across all target
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(a) Scenario A: All Targets (Soft Top-1 Accuracy)

(b) Scenario A: All Targets (nDCG Score)

Interpreter ‘ Ours ‘ Gemini GPT-40 4o0-Mini GPT-J GPT-2 Interpreter ‘ Ours ‘ Gemini GPT-40 40-Mini GPT-J GPT-2
ESCI (Ours) 1.00 0.75 0.75 0.64 0.79 0.70 ESCI (Ours) 1.00 0.83 0.82 0.79 0.83 0.81
Gemini-2.5-Flash | 0.67 1.00 0.87 0.75 0.64 0.58 Gemini-2.5-Flash | 0.85 1.00 0.89 0.88 0.79 0.75
GPT-40 0.70 0.91 1.00 0.77 0.70 0.68 GPT-40 0.81 0.91 1.00 0.90 0.84 0.79
GPT-40-Mini 0.60 0.85 0.81 1.00 0.66 0.59 GPT-40-Mini 0.77 0.89 0.88 1.00 0.80 0.75
GPT-J-6B 0.75 0.69 0.63 0.47 1.00 0.82 GPT-J-6B 0.85 0.76 0.75 0.74 1.00 0.85
GPT-2-XL 0.67 0.71 0.67 0.51 0.87 1.00 GPT-2-XL 0.81 0.78 0.80 0.77 0.90 1.00

(c) Scenario B: Last Target (Soft Top-1 Accuracy)

(d) Scenario B: Last Target (nDCG Score)

Interpreter | Ours | Gemini GPT-d4o 40-Mini GPT-J GPT-2 Interpreter | Ours | Gemini GPT-d4o 40-Mini GPT-J GPT-2
ESCI (Ours) 100 | 083 082 071 097 092 ESCI (Ours) 100 | 086 085 082 094 096
Gemini-2.5-Flash | 077 | 100 087 075 064 058 Gemini-2.5-Flash | 0.83 | 1.00 093 092 082 078
GPT-40 078 | 091 100 082 071 059 GPT-40 082 095 100 095 086 082
GPT-40-Mini 066 | 085 08 100 068 056 GPT-40-Mini 081 093 093 100 080 075
GPT-1-6B 098 | 069 070 049 100 079 GPT-J-6B 092 079 078 077 100 084
GPT-2-XL 096 | 071 071 050 085 100 GPT-2-XL 090 | 081 079 077 088 100

Figure 3: Confusion Matrices Evaluating Interpretation Plausibility. Each cell (i, j) represents how well the
Interpreter in row ¢ matches the scores of the Oracle in column j for interpreting our target LLM. Soft Top-1
(left) measures if the Interpreter’s top choice appears in the Oracle’s top-2. nDCG (right) measures ranking
correlation. Our proposed ESCI model shows remarkable alignment with GPT-J and GPT-2, suggesting it captures
the probabilistic dependencies of standard causal language modeling effectively despite its small size.

sentences) and Scenario B (focusing on the final
sentence, which often contains the conclusion).

Quantitative Assessment. Figure 3 presents the
pairwise alignment between our interpreter and the
five oracles. We employ nDCG to measure ranking
quality and Soft Top-1 Accuracy to measure top
choice alignment while accounting for ambiguity
in text attribution (see App. F for details).

Despite having orders of magnitude fewer
parameters (~71M trainable, ~110M loaded),
ESCI achieves competitive plausibility against
vastly different oracle architectures. In Scenario
B (Fig. 3c/d), ESCI aligns closely with both
GPT-J-6B, a standard causal language model, and
Gemini-2.5-Flash, a heavily instruction-tuned
system. This suggests that our energy landscape
effectively internalizes the causal mechanics of au-
toregressive generation.

We observe that ESCI yields sparse, confident
scores, contrasting with the diffuse distributions
of instruction-tuned oracles. Additionally, unlike
white-box models—which often struggle to pro-
duce valid probability distributions and require
post-processing intervention—ESCI operates as a
robust, standalone tool, while matching them in
attribution strength. It sharply isolates necessary
dependencies, minimizing the ambiguity typical of
generative baselines.

Qualitative Case Studies. Figure 4 provides a
granular look at specific attribution behaviors. In

cases of clear semantic mapping (21 and 142),
ESCI aligns perfectly with oracles. Disagreements,
however, are revealing. In Sample 33, ESCI at-
tributes the simplified output to the topic keyword,
whereas oracles point to the specific user question.
This suggests ESCI may sometimes over-prioritize
the global topic over query nuances. Conversely,
Sample 6 highlights ESCI’s strength: the target
sentence is a pure stylistic simplification. ESCI
correctly identifies the instruction “Explain like
I’m five” as the cause, whereas oracles fixate on the
semantic content. This confirms ESCI’s ability to
disentangle stylistic drivers from semantic ones, a
critical capability for interpreting instruction-tuned
models. Finally, Sample 94 illustrates total chaos,
where the target sentence is an analogy synthesiz-
ing multiple parts of the prompt, leading to valid
but divergent interpretations across all models.

4.3 [Evaluating Interpreter Faithfulness

While plausibility confirms that our interpreter
aligns with human and oracle judgments, it does
not guarantee that the selected concepts are the
true drivers of the LLM’s generation. To assess
this, we evaluate Causal Faithfulness by measuring
the generative consequences of intervening on the
input prompt. We adapt the standard metrics of Suf-
ficiency and Comprehensiveness (DeYoung et al.,
2020), modifying them for open-ended generation
by using semantic similarity rather than classifica-
tion probability (Atanasova et al., 2023).



ID | Prompt Sentences ESCI | GPT-40 | Gemini | Response Context & Target Sentence
[0] Why do people say "half a dozen" instead of "six"? 0.00 0.70 0.80 Okay! Imagine you have a box of cookies. If you have six
6 [1] It seems like such a common occurrence. 0.00 0.20 0.00 cookies, you can just say “six.” But if you say “half a dozen,”
[2] Why take the time and effort to say the extra ... 0.00 0.10 0.00 it’s like saying “half of a bigger group” of cookies. People
[3] Explain like I'm five. 1.00 0.00 0.20 like to use “half a dozen” because it sounds a little fancier. ..
21 [0] RGB lines when you take a picture of your monitor ... 0.98 0.80 1.00 ...the camera gets a little mixed up and shows the colors in
[1] Please explain like I'm five. 0.02 0.20 0.00 a funny way. That’s why you see those RGB lines! ...
[0] fuel octane. 1.00 0.00 0.00 ...not work anymore! So, it’s best to stick with the regular
33 | [1] What happens if I feed my Nissan Versa ... 0.00 .70 0.70 gas (87 octane) that your car is designed to use. That way, it
[3] Please explain like I'm five. 0.00 0.30 0.30 will run smoothly and be happy!
[0] What those black lines on the road are. 0.00 ).40 0.55 ... lines show where the lanes are, while others can tell you
48 | [1] EDIT: Sorry about the confusion, I meant ... 0.99 ).10 0.00 if you can park or if you need to stop. They are like guides
[31 Explain like I'm five. 0.01 0.50 0.45 that help everyone follow the rules of the road!
[0] What's the point of finding planets light years ... 1.00 0.00 0.30 ... while also exploring space, because both are important
94 | [2] Why can’t we spend money on improving ... 0.00 .70 0.30 for our future. It’s like making sure your toys are clean and
[3] Please explain like I'm five. 0.00 0.30 0.40 also dreaming about getting new ones!
142 [0] The most prominent members of the current . .. 1.00 .8 0.90 ... their own thing and keep the country safe. People are
[1] Explain like I'm five. 0.00 ).20 0.10 talking a lot about these ideas as they get ready to vote! ...

Figure 4: Qualitative Comparison of Attribution Scores. Left: Prompt snippets. Middle: Attribution scores from
ESCIT and oracles (Top scores in bold, near-zero scores grayed). Right: Target sentence from the LLM response.
ID 6: ESCI correctly attributes the simple tone to the style instruction (“Explain like I'm five™), while oracles focus
on the subject. ID 33: ESCI over-focuses on the topic keyword (“fuel octane”), while oracles correctly identify the
specific question. ID 94: A case of chaos where the target response is a broad analogy, leading all models to diverge.

We define Generative Sufficiency as the degree
to which the target output can be regenerated using
only the selected prompt sentences. Conversely,
Generative Comprehensiveness measures the ex-
tent to which the target concept is lost when the
selected sentences are removed from the prompt.
A faithful interpreter should maximize the former
and minimize the latter, creating a positive Faithful-
ness Gap. We quantify this using cosine similarity
between the embeddings of the original target sen-
tence and the generated counterfactuals.

Table 2 compares our ESCI against oracles de-
rived from GPT-40 and GPT-40-Mini; for each or-
acle sentences are selected based on the LLM’s
importance rankings using a max-ratio threshold-
ing strategy (see App. G for details).

Table 2: Causal Faithfulness Evaluation. We measure
the semantic similarity of the LLM’s response to the
target sentence under strict interventions. Sufficiency:
Prompting with only selected sentences. Comprehen-
siveness: Prompting with everything but selected sen-
tences. Gap: The net causal contribution

suggesting that our isolated subsets are not merely
relevant, but are necessary causal antecedents for
regenerating the target output. This is a signifi-
cant result given that our interpreter operates as
a lightweight surrogate with orders of magnitude
fewer parameters than the baselines. We note, how-
ever, that no model achieves near-zero Comprehen-
siveness; the consistent residual similarity (~ 0.21)
reflects the inherent ambiguity of open-ended gen-
eration, where LLLMs can often reconstruct seman-
tic content from background knowledge or redun-
dancy. Within this noisy regime, ESCI’s ability to
match the causal fidelity profile of state-of-the-art
oracles confirms its reliability as a computationally
efficient, standalone attribution tool.

5 Conclusion

In this work, we introduced a concept-level inter-
preter for black-box LLMs that shifts post-hoc attri-
bution from noisy tokens to coherent sentences. By
distilling latent dynamics into a differentiable en-
ergy landscape, we trained a standalone interpreter
operating with zero inference-time API costs. Our

Interpreter Suff. (1) Comp. () Gap (1) . } o

‘ ablation studies confirm that constraining the sur-
EIS)(;IAl(Ours)l g:gz 0'514 0'135 rogate with both of our novel fidelity and local
GPT-40 (O.ra.c ©) ’ 0-235 0175 dependency objectives is necessary for this task.
GPT-40-Mini (Oracle) 0.407 0.215 0.192

Analysis. Our method achieves Sufficiency parity
with the GPT-40 oracle and slightly outperforms the
GPT-40-Mini’s self-explanation. Critically, ESCI
also achieves the lowest Comprehensiveness score,

Empirically, ESCI achieves generative sufficiency
parity with GPT-40 while demonstrating slightly
superior causal isolation, disentangling necessary
antecedents from stylistic priors. This establishes
energy-based surrogates as a scalable pathway for
diagnosing model behaviors without full access.



6 Limitations and Future Work

Computational Trade-offs. A primary limita-
tion of our framework is the computational over-
head of the pre-training phase. Unlike perturbation-
based methods (e.g., LIME) which are expensive
at inference time, our approach shifts this burden
to training. While this incurs a one-time cost, it
is notably modest compared to LLM pre-training;
our experiments required less than 30 hours on
free-tier GPUs (see App. B and D). Crucially, this
investment yields a standalone interpreter capable
of O(1) inference with zero additional API queries,
making our method suitable for high-volume, real-
time analysis, though less accessible for users un-
able to perform the initial pre-training.

Generalizability and Scaling Limits. Due to re-
source constraints, our validation focused on stan-
dard Q&A tasks using compact surrogate mod-
els (~181M parameters) to interpret GPT-40-Mini.
Future work should expand to diverse domains,
including complex reasoning and open-ended gen-
eration (e.g., TellMeWhy, WikiText), and target dis-
tinct architectures beyond the GPT family. Addi-
tionally, while our scaling experiments suggest im-
proved performance with larger EBMs, the efficacy
of the energy landscape in capturing long-range de-
pendencies within massive context windows (e.g.,
128k+ tokens) remains to be verified. Investigating
the scaling laws of the interpreter is crucial to en-
sure robust attribution in high-complexity regimes.

Lack of Ground-Truth Mechanistic Validation.
A fundamental limitation of the black-box setting is
the reliance on probabilistic oracles (e.g., GPT-40)
rather than deterministic ground truth. While our
sufficiency metrics demonstrate causal efficacy,
high alignment with an oracle does not guarantee
the best fidelity to the target’s internal computation.
Consequently, our current results confirm behayv-
ioral simulation rather than mechanistic alignment.
Validating the latter requires future benchmarking
against open-weights architectures (e.g., Llama 3,
Pythia), where surrogate attributions can be directly
compared with white-box signals like Integrated
Gradients or attention maps. This would provide
deeper theoretical insight to quantify how closely
the surrogate energy landscape approximates the
target model’s true internal computational paths.

Human-Centric Utility. While sufficiency and
comprehensiveness quantify causal faithfulness,
they remain automated proxies. A key limitation

is the assumption that causal accuracy automati-
cally equates to human intelligibility. Although we
provide preliminary qualitative analysis, validat-
ing the practical utility of ESCI requires rigorous
subject studies. Such evaluations are critical to cor-
roborate our plausibility findings against human
judgment—providing a grounded check on proba-
bilistic oracles—and to assess downstream usabil-
ity. Specifically, we aim to measure whether these
explanations effectively aid users in high-stakes au-
diting tasks, such as detecting hallucinations, iden-
tifying bias, and verifying safety compliance.

Scope of Application and Optimization. Our
current evaluation is confined to the diagnostic util-
ity of attribution, leaving the framework’s broader
potential for downstream optimization empirically
unverified. Theoretically, the identification of nec-
essary sentences enables prompt optimization—
automatically pruning irrelevant context to reduce
token costs without degrading output quality. Sim-
ilarly, the energy landscape offers a mechanism
to audit Chain-of-Thought (CoT) reasoning, po-
tentially filtering unfaithful or confabulated inter-
mediate steps. However, given the complexity of
these domains, further experimentation is strictly
necessary to determine if the interpreter’s perfor-
mance can be sufficiently optimized to maintain ro-
bustness when deployed on such high-dimensional
generative tasks.

References

Pepa Atanasova, Oana-Maria Camburu, Christina Li-
oma, Thomas Lukasiewicz, Jakob Grue Simonsen,
and Isabelle Augenstein. 2023. Faithfulness tests for
natural language explanations. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
283-294. Association for Computational Linguistics.

Anton Bakhtin, Yuntian Deng, Sam Gross, Myle Ott,
Marc’Aurelio Ranzato, and Arthur Szlam. 2021.
Residual energy-based models for text. Journal of
Machine Learning Research, 22(40):1-41.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng,
Marc’ Aurelio Ranzato, and Arthur Szlam. 2019.
Real or fake? learning to discriminate machine from
human generated text. Preprint, arXiv:1906.03351.

Loic Barrault, Paul-Ambroise Duquenne, Maha El-
bayad, Artyom Kozhevnikov, Belen Alastruey, Pierre
Andrews, Mariano Coria, Guillaume Couairon,
Marta R. Costa-jussa, David Dale, Hady Elsahar,
Kevin Heffernan, Jodo Maria Janeiro, Tuan Tran,


https://aclanthology.org/2023.acl-short.25
https://aclanthology.org/2023.acl-short.25
http://jmlr.org/papers/v22/20-326.html
https://arxiv.org/abs/1906.03351
https://arxiv.org/abs/1906.03351

Christophe Ropers, Eduardo Sénchez, Robin San Ro-
man, Alexandre Mourachko, Safiyyah Saleem, and
Holger Schwenk. 2024. Large concept models: Lan-
guage modeling in a sentence representation space.
Preprint, arXiv:2412.08821.

Sumanta Bhattacharyya, Amirmohammad Rooshenas,
Subhajit Naskar, Simeng Sun, Mohit Iyyer, and An-
drew McCallum. 2021. Energy-based reranking:
Improving neural machine translation using energy-
based models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4528—4537. Association for Compu-
tational Linguistics.

Hila Chefer, Shir Gur, and Lior Wolf. 2021. Trans-
former interpretability beyond attention visualization.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
782-791. IEEE.

Colton Clemmer, Junhua Ding, and Yunhe Feng. 2024.
Precisedebias: An automatic prompt engineering ap-
proach for generative ai to mitigate image demo-
graphic biases. In 2024 IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 8581-8590.

Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam,
and Marc’ Aurelio Ranzato. 2020. Residual energy-
based models for text generation. In International
Conference on Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186. Association for Computational Linguis-
tics.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443-4458. Asso-
ciation for Computational Linguistics.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
Preprint, arXiv:1702.08608.

James Enouen, Hootan Nakhost, Sayna Ebrahimi, Ser-
can Arik, Yan Liu, and Tomas Pfister. 2024. TextGen-
SHAP: Scalable post-hoc explanations in text gen-
eration with long documents. In Findings of the As-
sociation for Computational Linguistics: ACL 2024,
pages 13984-14011. Association for Computational
Linguistics.

10

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3719-3728. Association for Computational
Linguistics.

Dan Friedman, Andrew Kyle Lampinen, Lucas Dixon,
Danqi Chen, and Asma Ghandeharioun. 2024. Inter-
pretability illusions in the generalization of simpli-
fied models. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pages
14035-14059. PMLR.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 107—-112. Association for Com-
putational Linguistics.

Stefan Hackmann, Haniyeh Mahmoudian, Mark Stead-
man, and Michael Schmidt. 2024. Word importance
explains how prompts affect language model outputs.
Preprint, arXiv:2403.03028.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2021. Self-
attention attribution: Interpreting information interac-
tions inside transformer. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 35,
pages 12963-12971. AAAI Press.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremental
parsing. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations.

Jennifer Hsia, Danish Pruthi, Aarti Singh, and Zachary
Lipton. 2024. Goodhart’s law applies to NLP’s ex-
planation benchmarks. In Findings of the Association
for Computational Linguistics: EACL 2024, pages
1322-1335. Association for Computational Linguis-
tics.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543-3556. Association for Computa-
tional Linguistics.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions.

Kalervo Jarvelin and Jaana Kekildinen. 2002. Cumu-
lated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422—-446.


https://arxiv.org/abs/2412.08821
https://arxiv.org/abs/2412.08821
https://doi.org/10.18653/v1/2021.acl-long.349
https://doi.org/10.18653/v1/2021.acl-long.349
https://doi.org/10.18653/v1/2021.acl-long.349
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.1109/WACV57701.2024.00840
https://doi.org/10.1109/WACV57701.2024.00840
https://doi.org/10.1109/WACV57701.2024.00840
https://openreview.net/forum?id=B1l4SgHKDH
https://openreview.net/forum?id=B1l4SgHKDH
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://doi.org/10.18653/v1/2024.findings-acl.832
https://doi.org/10.18653/v1/2024.findings-acl.832
https://doi.org/10.18653/v1/2024.findings-acl.832
https://doi.org/10.18653/v1/D18-1407
https://doi.org/10.18653/v1/D18-1407
https://proceedings.mlr.press/v235/friedman24a.html
https://proceedings.mlr.press/v235/friedman24a.html
https://proceedings.mlr.press/v235/friedman24a.html
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://arxiv.org/abs/2403.03028
https://arxiv.org/abs/2403.03028
https://doi.org/10.1609/aaai.v35i14.17533
https://doi.org/10.1609/aaai.v35i14.17533
https://doi.org/10.1609/aaai.v35i14.17533
https://sentometrics-research.com/publication/72
https://sentometrics-research.com/publication/72
https://sentometrics-research.com/publication/72
https://sentometrics-research.com/publication/72
https://doi.org/10.18653/v1/2024.findings-eacl.88
https://doi.org/10.18653/v1/2024.findings-eacl.88
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Been Kim, Martin Wattenberg, Justin Gilmer, Car-
rie Cai, James Wexler, Fernanda Viegas, and Rory
Sayres. 2018. Interpretability beyond feature attri-
bution: Quantitative testing with concept activation
vectors (TCAV). In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
2668-2677. PMLR.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1885-1894.
PMLR.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017. Un-
derstanding neural networks through representation
erasure. Preprint, arXiv:1612.08220.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems,
volume 30, pages 4765-4774. Curran Associates.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992. Association for Computational Linguis-
tics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should I trust you?": Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1135-1144. Association for Computing Machinery.

Johannes Schneider. 2024. Explainable generative ai
(GenXAI): a survey, conceptualization, and research
agenda. Artificial Intelligence Review, 57(11):289.

S. Fatemeh Seyyedsalehi, Mahdieh Soleymani
Baghshah, and Hamid R. Rabiee. 2024. SOlnter:
A novel deep energy-based interpretation method
for explaining structured output models. In The
Twelfth International Conference on Learning
Representations.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 3145-3153. PMLR.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2014. Deep inside convolutional networks:

11

Visualising image classification models and saliency
maps. In International Conference on Learning Rep-
resentations (Workshop Track).

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3319-3328. PMLR.

Lifu Tu, Richard Yuanzhe Pang, Sam Wiseman, and
Kevin Gimpel. 2020. ENGINE: Energy-based infer-
ence networks for non-autoregressive machine trans-
lation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2819-2826. Association for Computational Linguis-
tics.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R. Bowman. 2023. Language models don’t
always say what they think: Unfaithful explana-
tions in chain-of-thought prompting. In Advances in
Neural Information Processing Systems, volume 36,
pages 71725-71739. Curran Associates.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates.

Qizhe Xie, Xuezhe Ma, Zihang Dai, and Eduard Hovy.
2017. An interpretable knowledge transfer model for
knowledge base completion. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
950-962. Association for Computational Linguistics.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention.
In Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 2048-2057.
PMLR.

Kayo Yin and Graham Neubig. 2022. Interpreting lan-
guage models with contrastive explanations. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 184—198.
Association for Computational Linguistics.

Zhixue Zhao and Boxuan Shan. 2024. ReAGent: A
model-agnostic feature attribution method for gener-
ative language models. In Proceedings of the AAAI
2024 Workshop on Responsible Language Models
(ReLM). Association for the Advancement of Artifi-
cial Intelligence.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In International Conference on
Learning Representations.


https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://proceedings.mlr.press/v80/kim18d.html
https://proceedings.mlr.press/v80/kim18d.html
https://proceedings.mlr.press/v80/kim18d.html
https://proceedings.mlr.press/v70/koh17a.html
https://proceedings.mlr.press/v70/koh17a.html
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/s10462-024-10916-x
https://doi.org/10.1007/s10462-024-10916-x
https://doi.org/10.1007/s10462-024-10916-x
https://openreview.net/forum?id=Fn655mJ4bv
https://openreview.net/forum?id=Fn655mJ4bv
https://openreview.net/forum?id=Fn655mJ4bv
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v70/shrikumar17a.html
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251
https://proceedings.neurips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/P17-1088
https://doi.org/10.18653/v1/P17-1088
https://proceedings.mlr.press/v37/xuc15.html
https://proceedings.mlr.press/v37/xuc15.html
https://doi.org/10.18653/v1/2022.emnlp-main.14
https://doi.org/10.18653/v1/2022.emnlp-main.14
https://arxiv.org/abs/2402.00794
https://arxiv.org/abs/2402.00794
https://arxiv.org/abs/2402.00794
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

A Preprocessing Details

To ensure compatibility with fixed-dimensional at-
tention mechanisms, we normalize sentence counts
during preprocessing. We define a task-dependent
hyperparameter, Ny, representing the maximum
sequence length. After input and output sentences
are extracted and embedded, the sequences are
padded with a learnable placeholder token or trun-
cated to strictly match this length. This results in
dense input tensors S™, SO ¢ RNVmaxxd wwhere d
is the embedding dimension of the Sentence-BERT
model (768 for all-mpnet-base-v2).

B Energy Network: Pre-training Details

x

BlackBox LLM

Y

Negative
Pairs

SentenceBERT

Il

Input-Output Interaction .
IS(Cin Cout) I

Energy Calculation
MLPE(C™)

Concept Space Projection

pE

Concept Space Projection
in-concept(S™)

£ t
Pouvconcept(s o )

~ —_— - — _ — =

Pos. Energy &pm(z, y) Neg. Energies & m(N;)

(the same pipeline)
InfoNCE Loss

Figure 5: Pre-training Pipeline of the EBM. The ar-
chitecture projects SentenceBERT embeddings into a
dynamic concept space via self-attention, followed by a
cross-attention mechanism to model input-output inter-
actions. An MLP aggregates these features to compute
a scalar energy score & yv(x,y;0). The model is op-
timized using a dual-objective InfoNCE loss: fidelity
contrasts authentic pairs (x,y) against global negatives
in V; (e.g., human responses) to learn the target distribu-
tion, while local dependency contrasts partial sequences
against batch negatives in NV to enforce fine-grained
causal precision. Thus, the weighted sum of InfoNCE
losses minimizes the energy of authentic pairs while
maximizing the energy of corrupted samples.

The Energy-Based Model’s training pipleline is
illustrated in Figure 5. We trained all EBM variants
on dual NVIDIA T4 GPUs (provided by Kaggle’s
free tier) using the AdamW optimizer. The training
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process for each EBM required approximately 25
hours. Table 3 details the specific hyperparameters
used for the final Hybrid model.

Table 3: Hyperparameters for the Myypria EBM.

Parameter Value
Architecture
Encoder Model all-mpnet-base-v2
Frozen Parameters 110M
Trainable Parameters 7IM
Total Parameters 181M
Projection Dimension (dmodel) 768
Self-Attention Layers 2
Cross-Attention Layers 6
Attention Heads 8
Dropout Rate 0.1
MLP Layers 2
MLP Hidden Factor 2
Optimization
Epochs 50
Batch Size 16
Learning Rate 3e~?
Scheduler Linear Warmup
Warmup Steps 200
Loss
Loss Function InfoNCE
Local Dependency Weight (\) 0.9
InfoNCE Temperature (7) 0.1
Margin 0.5
Negative Candidates (K) 5

Data
Dataset Size
Validation Split
Max Sentence Count

20, 000 samples
10%
16 (Learnable Padding)

Model Configurations. To assess the impact of
our dual objectives, we trained three distinct EBM
variants. Mpigelity (A = 0) mimics standard likeli-
hood modeling by contrasting positive pairs against
only global corruptions. Mpep (A = 1) learns ex-
clusively by contrasting partial segments, forcing
the model to identify semantic links without over-
fitting to the surface artifacts of a single authentic
pair. Finally, Myypria (A = 0.9) combines these
approaches; it relies on dependency samplers to
capture structural logic while using the fidelity sig-
nal to regularize the latent space.

Negative Sampling Strategies. The training ob-
jective relies on a diverse set of negative samples to
shape the energy landscape. The specific samplers
used for each configuration are:

* Mpyideiity Samplers:

— response_human: Swaps the LLM re-
sponse with a human-written answer
from the HC3 dataset.



— response_other_1lm: Swaps response
with a GPT-2 Medium output.

— response_sentence_masking: Masks
a random number of sentences in the
LLM’s response.

— prompt_sentence_masking: Masks a
random number of sentences in the data
pair’s prompt.

— of f_topic: Swaps response or prompt
with one from a different pair in the
batch.

* Mpep Samplers:

— partial_response_dep: Contrasts the
authentic partial response (positive)
against a mismatched partial response
from the batch (negative) given the same
partial prompt. This forces the model to
verify that the output is a specific logical
continuation of the input concepts.

partial_prompt_dep: Contrasts the au-
thentic partial prompt (positive) against
a mismatched partial prompt from the
batch (negative) given the same partial
response. This ensures that the response
is causally attributed to the correct input
antecedents rather than generic topics.

* MHuybria Samplers:

partial_response_dep: See Mpep.

partial_prompt_dep: See Mpep.

response_human: See MeFidelity-

response_other_Im: See MFidelity-

C Differentiable Top-/ Sentence
Selection via Gumbel-Softmax

The interpreter network aims to identify the K most
important sentences from the input x influential in
generating the target yr. Since selecting top-K in-
dices is a discrete, non-differentiable operation, we
employ the Gumbel-Softmax relaxation to enable
end-to-end training.

Let the interpreter function produce a vector of
unnormalized relevance logits z € R" for the n
input sentences, denoted as z; = (ZN (x, y7; @) );.
To introduce stochasticity, we first generate stan-
dard Gumbel noise g; from i.i.d. uniform samples
u; ~ Uniform(0, 1) as follows:

gi = —log(—logw;), i=1,....,n. (Cl)
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Given a temperature 7 > 0, a single contin-
uous relaxation of a one-hot vector, denoted as
c € A" is computed via the softmax function:

exp((2i + 9i)/7)
2 j—1exp((z +95)/7)°

C; = i:1,...,n.

(C2)
As 7 — 0, the vector c approaches a discrete
one-hot sample from the categorical distribution
defined by z. To approximate a K-hot selection
vector (selecting multiple sentences), we draw K
independent relaxed samples {c() }f(zl using Equa-
tion C2. We then aggregate these samples by taking
their element-wise maximum:

m; = 1max cl(]), 1=1,...
j=1,...K

Ay

(C3)

, M.

The resulting vector m serves as a continuous
proxy for the binary mask. The final output of the
interpreter used to gate the input sentences is:

IN(X, Y1, Oé)i =m;. (C4)

During training, this soft mask allows gradients
to backpropagate through the selection process.
During inference, we obtain the discrete selection
by taking the indices of the top-K logits directly or
by hardening the soft mask.

D Interpreter: Training Details

We report the configuration and formulation for the
best-performing interpreter, trained utilizing the
EBM-guided framework on the Hybrid (A = 0.9)
energy landscape. The training process required
approximately 1 hour on dual NVIDIA T4 GPUs
(provided by Kaggle’s free tier). Table 4 details the
specific hyperparameters.

D.1 Alternating Optimization Details

While Section 3.3 outlines the high-level objec-
tive, we detail here the specific gradient updates
required for training. To mitigate the distribution
shift caused by masking (Fig. 6), we define the
joint optimization loop. Let 8%) and a(¥) denote
the parameters at step k.

Step 1: Interpreter Update. We freeze the EBM
parameters #*~1) and update the interpreter to im-
prove selection precision. The gradient update is:

o) a0 = 5,9, (Emlx © M,y 007Y)
—&m(x© (1= M),yr; «9(’“‘”)) (D1)

where M = TN (x;y7, ¥ ~1) is the generated
mask.



Table 4: Hyperparameters for the Interpreter.

Parameter Value
Architecture
Encoder all-mpnet-base-v2
Projection Dim (dimoder) 768
Self-Attention Layers 2
Cross-Attention Layers 6
Attention Heads 8
Dropout Rate 0.1
MLP Layers 1
MLP Hidden Dimension 256
Optimization
Epochs 50
Batch Size 16
Learning Rate le”

Loss Function
Selection Mechanism
Gumbel Temperature

InfoNCE (7 = 0.1)
Gumbel-Softmax
1.0

Data
Dataset Size
Validation Split
Max Sentence Count

20, 000 samples
10%
16 (Learnable Padding)

Step 2: Periodic Grounding. Every Ngound
steps, we generate a fresh training pair to re-align
the EBM. We apply the current hard mask to the
prompt and query the black-box LLM:

x=xOILM > 0.5)
¥ = LLM()

(D2)
(D3)

This creates a valid sample (X, y) that represents
the model’s actual behavior under the current mask-
ing policy.

Step 3: EBM Fine-tuning. We update the EBM
to minimize the energy of the new synthetic pair
(%,¥) while maintaining the structural constraints
learned during pre-training. We employ the same
dual-objective loss Ly defined in Equation 1
(Sec. 3.2), consisting of both Ldelity and Lgep.
However, because there is no ground-truth
human response for the dynamically masked
prompt X, we modify the negative sampling
set N; for the fidelity objective (App. B).
We substitute the response_human sampler
with another distinct model-based negative
response_other_lm_stochastic to maintain
distribution contrast. The gradient update is thus
computed using this modified negative set N

Q(k) — Q(kfl) — 19V ((1 - )\)Eﬁdelity(ia 577/\7)
M ap(%,5)) (D4

This alternating procedure ensures that as the in-
terpreter’s selections evolve, the energy landscape
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Figure 6: Overview of the Alternating Optimization
Protocol. The framework employs a joint training strat-
egy to prevent distribution shift. (Left) In the standard
phase, the interpreter generates a binary mask over the
prompt sentences; its parameters are updated to maxi-
mize the energy gap using the frozen EBM as a critic.
(Right) Periodically, the EBM is fine-tuned to adapt
to the interpreter’s evolving distribution. This involves
querying the target LLM with the currently masked
prompt to obtain a fresh, ground-truth response, thereby
grounding the energy landscape in the model’s actual
behavior under partial input.

adapts to provide accurate supervision for those
specific sparse inputs.

E Energy Network: Evaluation Protocols

To evaluate the EBM’s semantic alignment beyond
aggregate accuracy, we developed a suite of granu-
lar diagnostic tests. This section details the mathe-
matical formulations, dataset filtering criteria, and
specific metrics for each testing dimension.

E.1 Dataset Preparation & Filtering

For all diagnostic tests, we utilized specific subsets
of the HC3 validation set (N = 1000). To gen-
erate the ground-truth importance scores used for
evaluation, we employed an ablation-based energy
drop methodology. For each sample pair (x,y),
we systematically removed each sentence to create
variants. We calculated the energy for two modes:

* Prompt Ablation: Pairs (x\;,y), where x;
is the prompt with the i-th sentence removed.

* Response Ablation: Pairs (x,y\;), where
y\j is the response with the j-th sentence re-
moved.



The importance of a sentence was quantified by
the positive energy drop caused by its removal rel-
ative to the baseline energy £(x,y). Using these
scored samples, we applied specific filters to isolate
relevant linguistic phenomena:

* Interrogative Subset (/N = 769): Used for
Dimension 1. We filtered for prompts contain-
ing explicit interrogative structures, defined as
sentences ending in a question mark or start-
ing with standard interrogative pronouns (e.g.,
“What”, “How”, “Why”).

Artifact Subset (N = 890): Used for Dimen-
sion II. We filtered for responses containing
distinct conversational fillers (e.g., “Okay!”,
“Sure!”, “Here is the answer:”) appearing as
isolated sentences.

Oracle Subset (N = 500): Used for Di-
mension Ill. A random subset of validation
samples was selected for external scoring by
Gemini-2.5-Flash.

Counterfactual Subset (N = 500): Used for
Dimension IV. Gemini-3-Pro was employed
to generate specific counterfactual triplets
from validation data (see App. E.5 for details).

E.2 Dimension I: Core Directive Localization

This test assesses the model’s ability to distinguish
the primary user intent (the directive) from supple-
mentary context or conversational filler.

Ablation Methodology. For a given prompt x
consisting of n sentences {s1, s2,...,s,} and a
fixed response y, we calculate the baseline energy
Epase = £(x,y). We then systematically remove
each sentence s; to create an ablated prompt x,;
and compute the Relative Energy Impact (AE;):

AE; = S(X\b Y) — Fhase (E1)

A positive AF; implies that sentence s; was nec-
essary for the low-energy alignment (i.e., it was
semantically important).

Metric Definitions. Let Sg be the set of indices
corresponding to interrogative sentences and Sy¢
be the set of indices for non-causal context.

* Interrogative Recall@1 (IR@1): Adapting
the rationale extraction evaluation protocol
from ERASER (DeYoung et al., 2020), we
define this as the frequency with which the
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sentence producing the maximum energy im-
pact is an interrogative sentence.

R@1 = % Z;\le I[argmax;(AE;;) € Sg;] (E2)

The metric yields a value in [0, 1], where an
ideal score of 1 indicates that the explicit
question is consistently ranked as the primary
causal driver. However, we note that perfect
recall is not expected, as our dataset analysis
revealed that human-written Q&A prompts of-
ten contain implicit or structurally ambiguous
directives where the semantic core is not the
grammatical question.

* Attribution Signal-to-Noise Ratio (SNR):
Adapting standard signal processing defini-
tions to attribution magnitude, we define this
as the ratio of the average energy impact of
questions to the average energy impact of non-
question context sentences.

1
TSql 2uiesq AEi
1

SNR = (E3)

where € = 1e™ is a constant for stability. A
high SNR indicates the model is highly sensi-
tive to the directive and insensitive to noise.

E.3 Dimension II: Semantic Robustness

This test measures the model’s susceptibility to
non-semantic conversational artifacts, addressing
a prevalent pathology in neural models known as
reliance on spurious correlations or “annotation ar-
tifacts” (Gururangan et al., 2018). Grounded in con-
cepts originally established for NLI datasets, this
evaluation assesses whether the model has learned
to treat high-frequency tokens (e.g., conversational
fillers such as “Okay!”) as proxies for output valid-
ity, independent of their actual semantic content.

Metric Definitions. Let .S 4, be the set of indices
corresponding to artifact sentences.

 Artifact Energy Impact (Art. AFE): The
average change in energy when an artifact is
removed. This metric is adapted from Input
Reduction methods (Feng et al., 2018), where
we aim to measure the model’s sensitivity to
the removal of negligible features.

1

Art. AE =
|SArt|

Z (5(X> Y\z’) - Ebase)
iESA’!’t

(E4)



* Rank-1 Error (R1E): The proportion of sam-
ples where an artifact sentence is assigned the
highest importance rank (Rank 1). This metric
quantifies the fidelity trap, where the model
overfits to surface-level plausibility markers
rather than semantic drivers.

RIE = Z [argmax AEj;) € Sartj

(E5)

E.4 Dimension III: Oracle Alignment

This test validates the EBM’s internal ranking of
sentence importance against a gold standard rank-
ing generated by a state-of-the-art LLM to assess
ranking alignment and accuracy.

Oracle Setup. For each sample in the Oracle
Subset, Gemini-2.5-Flash was provided with the
prompt, response, and list of sentences as derived
by the EBM, and instructed to assign an integer
Information Density Score y; € {0,...,5} to each
response sentence s;. The scoring criteria were:

* 0 (Fluff): Purely conversational filler or
phatic expressions (e.g., “Okay!”) with zero
informational value.

1 (Minor Context): Generic transitions or
polite formatting that aids flow but adds no
unique content.

2 (Useful Background): Contextual defini-
tions or analogies that facilitate understanding
without constituting the direct answer.

3 (Supporting Info): Elaborations or details
necessary for a complete explanation; remov-
ing these makes the answer feel thin.

* 4 (Important): Key facts, steps, or reasoning
that directly address the user’s request.

5 (Critical): The core thesis or direct solu-
tion; the response is conceptually incomplete
without this sentence.

Metric Definitions. Let S = {s1,...,s)} be
the set of sentences in a response. Let rel; be the
oracle’s score for sentence ¢, and let 7 be the per-
mutation of indices induced by sorting the EBM’s
energy impact scores A F in descending order (i.e.,
7(1) is the index of the most important sentence
according to the EBM).
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 nDCG @3 (Normalized Discounted Cumu-
lative Gain): We measure the ranking quality
at cutoff £ = 3. The Discounted Cumulative
Gain (DCG) is computed as:

27‘6[7‘,(2) 1

logsy (i + 1) (E)

DCGQk = Z

The Ideal DCG (IDCG) is computed similarly
using the permutation 7* that sorts the oracle’s
scores perfectly. The final metric is:

DCGQk
IDCGQE
This metric penalizes the model heavily if it

fails to place high-value (oracle score 5) sen-
tences in the top ranks.

nDCGQk = ET)

Soft Precision@1: This metric assesses the
utility of the single most important sentence
identified by the EBM. It is defined as the
proportion of samples where the EBM’s top
choice received a high relevance score (> 4)
from the oracle:

N
S-Prec@1 = Zb;ﬂ el 2 4] E8)

E.5 Dimension I'V: Causal Disentanglement

This test evaluates the model’s ability to identify
specific causal links between input and output con-
cepts, distinguished from mere topical association.

Counterfactual Setup. For each sample in the
Counterfactual Subset, the model identified:

1. A specific target response sentence (Yearget)-

2. The high-impact prompt sentence (Zcause) that
directly necessitated Yarget-

3. A low-impact distractor sentence (Zdistractor)
from the same prompt that was topically re-
lated but causally irrelevant to yiarget-

Metric Definitions. We quantify discriminative
performance by comparing the energy assigned to
causal versus distractor antecedents. Let £(z,y)
denote the scalar energy score, where lower val-
ues indicate higher compatibility. For a successful
disentanglement, the model must assign strictly
lower energy to the true cause than to the dis-
tractor, satisfying the condition &£ (Zcause, Ytarget) <
E (T distractor» Yearger). We aggregate this behavior us-
ing two metrics:



* Counterfactual Accuracy: The percentage
of triplets where the EBM correctly assigns
lower energy to the causal pair.

100 o
Acc = W jzz:l]:[[g(xcausfn ytarget) (E9)

<& (zdistractorv ytarget)]

* Energy Separation Margin (ESM): The av-
erage magnitude of the energy difference be-
tween the distractor and the cause. A larger
positive margin indicates higher confidence in
the causal distinction.

N

1
ESM = N Z(g(xdistractora ytarget)

= (E10)

- g(xcausea ytarget))
F Interpreter: Plausibility Evaluation

To construct the plausibility benchmark, we
prompted five diverse LLMs (Gemini-2.5-Flash,
GPT-40, GPT-40-Mini, GPT-J-6B, and GPT-2-XL)
to act as data annotators.

Prompting Strategy. For a given sample tuple
consisting of a prompt P = {s, ..., sh} and a spe-
cific target response sentence sy, each oracle was
provided with the full text context and instructed to:
“Assign an importance score (0.0 to 1.0) to every
Prompt Sentence. The scores MUST sum to ex-
actly 1.0.” To maximize determinism, we utilized
a temperature of 7' = 0 or close to it.

Metric Definitions. Let yqacie € R™ be the vec-
tor of ground-truth importance scores provided by
an oracle for the n sentences in the prompt. Let
Yinterp € R be the predicted importance scores
output by the interpreter.

* Soft Top-1 Accuracy: This metric addresses
the inherent ambiguity in attribution where
multiple prompt sentences may be necessary.
We define a match if the interpreter’s single
highest-scored sentence falls within the top-%
sentences identified by the oracle.

yi;terp) be the in-
dex of the sentence chosen by the interpreter.
Let Si(Yoracle) be the set of indices corre-
sponding to the k largest values in yoracle- The
metric is defined as:

SoftAcc@k = I1[i* € Sk(Yoracle)]

Let i* = al"gmaxie{l,..‘,n}( o

(F1)

In our experiments, we set k = 2.
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e nDCG (Normalized Discounted Cumula-
tive Gain): Similar to EBM experiments, we
utilize nDCG to evaluate the quality of the
entire ranking order. This metric penalizes the
interpreter if it assigns low importance scores
to sentences that the Oracle deemed critical.

Let 7 be a permutation of indices {1,...,n}

that sorts the scores yineerp in descending order,

such that y")) > y((2) The DCG
yinterp = yinterp =

is computed using the oracle’s scores as the

true relevance grades:

n

(7))

Yoracle

DCG = ) Jomce
= logy(j +1)

(F2)

The Ideal DCG (IDCG) is computed similarly
using the permutation 7* that sorts yoracle in
descending order. The normalized score is:

_ DCG

DCG =
cG IDCG

n (F3)

G Interpreter: Generative Faithfulness

Quantifying faithfulness in open-ended generation
is fundamentally distinct from classification tasks.
Unlike classification, where the output is a discrete
label, generative outputs are high-dimensional and
semantically flexible. A true causal driver may not
reproduce the exact tokens of the target, but should
reproduce its semantic core. To validate our inter-
preter, we devised a three-stage evaluation pipeline:
(1) deriving comparable oracle baselines via dy-
namic max-ratio thresholding, (2) establishing met-
ric definitions robust to generative variance, and
(3) filtering non-causal RLHF artifacts to strictly
isolate semantic drivers.

Oracle Baseline Construction. To compare our
interpreter’s binary selections against the continu-
ous importance scores s; € [0, 1] produced by the
oracle LLMs, we employed a Max-Ratio Thresh-
olding strategy. For a given prompt, a sentence ¢
is selected if its importance score is within a factor
of the maximum score assigned to any sentence in
that prompt:

Selecti <— s; > 0.5- mjax(sj) (G1)
This dynamic thresholding adapts to the model’s
confidence distribution, ensuring we capture the
primary drivers of the generation while discarding
marginal contributors.



Metric Definitions. For our evaluation (Table 2),
we utilize the following definitions. Let S(-) be the
embedding function and y; be the target.

* Generative Sufficiency (Mgygr): The similar-
ity between the target and generated response
using only the selected sentences xg:

Muee = cos(S(LLM(xg)), S(y:)) (G2)

* Generative Comprehensiveness (M comp):

The similarity between the target and the re-

sponse generated using the complement sub-
set x \ xg:

Meomp = cos(S(LLM(x \ x5)), S(y1))  (G3)
To instantiate these metrics, we select Cosine Simi-
larity over sentence embeddings as our comparison
function. This choice is grounded in our robustness
analysis (see Selecting Similarity Function below),
which demonstrates that strict logical entailment
metrics (NLI) are overly rigid for validating open-
ended generation.

Selecting Similarity Function. We initially at-
tempted to evaluate faithfulness using Natural
Language Inference (NLI) models (specifically
deberta-v3-large) to detect logical entailment
between the counterfactual generation and the orig-
inal target. However, as shown in Table 5, NLI
metrics proved too rigid for generative tasks.

Table 5: Robustness Check: NLI Metrics. Faithful-
ness scores computed using DeBERTa-v3 Entailment
probabilities. The extremely low sufficiency scores
(< 0.15) indicate that NLI penalizes valid semantic
paraphrases, making it unsuitable for evaluating open-
ended generation.

Interpreter \ Suff. (1) Comp. () Gap (1)
ESCI (Ours) 0.146 0.083 0.063
GPT-40 0.093 0.061 0.033
GPT-40-Mini 0.145 0.073 0.072

The NLI Sufficiency scores hovered around
0.09 — 0.15, implying that even the full correct
context rarely entailed the target according to the
NLI model. This is because NLI models are trained
on premise-hypothesis pairs that require strict logi-
cal implication, whereas generative recovery often
involves paraphrasing. Consequently, we adopted
Cosine Similarity (using all-mpnet-base-v2) for
our primary evaluation. As detailed in the main
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text, Cosine Similarity yielded sufficiency scores
in the ~ 0.41 range, capturing the soft semantic
retention characteristic of open-ended generation.

Filtering RLHF Priors (Trivial Targets). A ma-
jor confounder in interpreting instruction-tuned
models is the prevalence of conversational fillers
(e.g., “Okay!”, “Sure, here is the answer”). These
outputs are often driven by Reinforcement Learn-
ing from Human Feedback (RLHF) priors rather
than specific prompt content. If included, they ar-
tificially inflate comprehensiveness scores (lower
is better), as the model will often hallucinate these
polite preambles even when the causal instruction
is removed.

We conducted a trivial target analysis on a subset
of conversational fillers (n = 157) identified via
regex matching. As shown in Table 6, the target
LLM frequently regenerates these targets even un-
der strict counterfactual conditions. Notably, while
ESCI achieves the highest Trivial Sufficiency (in-
dicating strong causal isolation), it yields a Trivial
Comprehensiveness of 40.8%. This seemingly high
hallucination rate is a byproduct of our method’s
sparsity; because ESCI selects significantly fewer
sentences than the baselines, the complement set
(used for comprehensiveness) remains larger and
more likely to contain residual context that triggers
the model’s strong RLHF priors.

To prevent these non-causal hallucinations from
skewing the semantic evaluation, we strictly filtered
these targets from the main benchmark.

Table 6: Trivial Target Analysis. We measure how
often conversational fillers (e.g., “Okay!”) persist under
intervention. Triv. Suff: Percentage of times the filler
is generated given only the instruction. Triv. Comp:
Percentage of times the filler is hallucinated when the
instruction is removed. Values confirm these are RLHF
priors, not causally sensitive targets.

Interpreter | Triv. Suff. (1) Triv. Comp. (})
ESCI (Ours) 32.5% 40.8%
GPT-40 21.6% 5.2%
GPT-40-Mini 15.5% 16.4%

H The LLM Usage

Parts of the initial drafts of this manuscript were
revised with the assistance of a Large Language
Model. The model was prompted to improve the
fluency, conciseness, and overall academic tone of
the text to meet the standards of ACL publications.
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